
Piotr Karwatka
CTO at Divante and Vue Storefront Co-founder

Halil Köklü
CTO at LoveCrafts

Partners

FONTS

Titles 30
Subtitles 15
Text 12

http://lovecrafts.com/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://www.vuestorefront.io/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper

Monolithic systems are out-of-date.
It is high time to go headless.

What technology stack does
LoveCrafts have currently?

Why is Headless Architecture an
answer to the limitations of
monolith-implied technology?

Why is the scalable API crucial
now?

LoveCrafts’ journey into Headless
Architecture

When did the idea of going
Headless spark in LoveCrafts?

What were the reasons
LoveCrafts decided to go with
commercetools?

How did the due-diligence
process look?

How were the doubts resolved?

Why was upgrading to Magento 2
not an option?

Was SaaS the obvious choice?

How did you address your
concerns about specific
providers?

What sources did you use in the
due diligence process?

The challenge of cloud-first platform
customization

What are the ways to customize
a cloud-first platform?

Why did Vue Storefront turn out
to be a good fit in terms of
customizing commercetools?

Why is an open-source model so
important?

The migration process step by step

How did the actual
implementation process look at
LoveCrafts?

What is LoveCrafts release
strategy?

How do you manage content in
the headless era?

The desired LoveCrafts architecture

What are the key building blocks
of the new LoveCrafts
architecture?

A comprehensive guide for CTOs by Divante

Piotr Karwatka
CTO at Divante

LoveCrafts is one of the largest
crafting community websites and
marketplaces in the world, shipping to
over two hundred countries.

Halil and his passionate team are
weaving together commerce,
community, and content for the world
of makers.

Prior to joining LoveCrafts in 2013,
Halil led technology at Rocket Internet
and Namshi, the largest online fashion
retailer in the Middle East.

Halil Köklü
CTO at LoveCrafts

Before starting Divante in 2008, Piotr
was already passionate about
open-source. As a CTO, he has not
strayed from this path.

He co-founded Vue Storefront, the
open-source PWA frontend for any
eCommerce, which is based on Vue.js.

On a daily basis, Piotr is responsible
for technology solutions for leading
eCommerce brands. At Divante, he has
supported companies like SAP, Levi
Strauss, Marc O’Polo, and
Zadig&Voltaire in delivering top-notch
solutions to their customers.

Piotr Karwatka talks with Halil Köklü about implementing headless eCommerce
- on the real-life case study of LoveCrafts.

“The industry
is moving from
all-in-one platforms
to a modular
proposition.”
Halil Köklü

Monolithic systems
are out-of-date.
It is high
time to go Headless!
Monoliths are incapable of keeping up
with the pace of globally scalable
businesses. Headless Architecture
based on an API-first approach makes
technology better serve the business
needs.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: LoveCrafts was using
Magento, and you know this system
from the inside out. However, as we all
started to realize, there are growing
doubts about the future (especially
given its end-of-life in June 2020) of
this and similar all-in-one systems.
What technology stack do you currently
use and why is it not just Magento?

Halil Köklü: The transactional part of our
product is still run by Magento and we
have spent many years scaling it from an
infrastructural as well as functional
perspective.

Yet, it needs significant investment to
run a truly global business at scale with
this. Things like multi-warehousing and
proper multi-currency and taxation, as
well as performance tweaks for
indexing, caching, bulk changes, and
rendering, are not achievable overnight.

Magento is, however, only one part of
our stack. We have built the community
and content parts of our product
bespoke with, amongst others, Symfony.
There is also a good set of internal
systems running both business and
infrastructure processes.

We are operating in the AWS cloud using
various AWS services. We do
infrastructure-as-code, continuous
delivery, and so on.

A comprehensive guide for any eCommerce businesses considering moving
towards Headless Architecture, based on the first-hand experience of
LoveCrafts.

LoveCrafts migration scheme

A comprehensive guide for CTOs by Divante

Piotr Karwatka: That is why you
eventually decided to change the
platform and go headless with PWA as a
frontend. just to clarify, what is your
definition of Headless Architecture and
why it is now a best solution?

Halil Köklü: The simple answer is that
platforms providing business value such
as eCommerce and content
management systems are coming
without a frontend, the head. They
instead provide value through fast,
extensive APIs. If done right, all
functionality, including admin processes,
is available through APIs. You’ve got full
control over the frontend; you can focus
on building great user experience and
you are not held back by rigid
constraints of the backend platforms
used.

You can have multiple frontends or
touchpoints like native apps, kiosks,
in-store, IoT or whatsoever interacting
with the same APIs, so you don’t end up
implementing the same processes in
many places.

This is the reason why more and more
eCommerce platforms support GraphQL
to provide this feature at scale. This is, in
contrast, to let’s say
model-view-controller (MVC)
applications where business logic can
be accessed by including code. This
does not work if the consuming code is
not the same, is on a different server,
written a different language, etc.

Amongst other benefits, with the
headless approach, you can scale the
frontend and backend separately.

In the case of Magento 1, you have code
and business logic in the controllers,
models, and views. It’s a nightmare for
consistency.

Headless Architecture is,
however, not new at all. At the
very least, if you have a
frontend talking to APIs, you
have some element of this
already in place.

I would say Headless Architecture and
headless commerce are buzzwords for
the emergence of API-first or even
API-only off-the-shelf solutions.

So, we are not talking about bespoke
implementations but major eCommerce
software vendors adopting this trend.
The market is moving from all-in-one,
one-stop or full-stack platforms to a
bring-your-own-frontend, modular
proposition.

Check out The New
Architecture in eCommerce,
ebook which presents
headless and other modern
technological approaches

https://divante.com/the-new-architecture/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper

A comprehensive guide for CTOs by Divante

Piotr Karwatka: The APIs weren’t a key
priority for the established platform
vendors and, in eCommerce, the
platforms are very often taken as a
shortcut to the market.

Halil Köklü: Definitely. Having APIs on its
own is not sufficient if they are not
designed for scale. Good luck with
consuming product data for your
frontend via SOAP in Magento 1.

Contenders like commercetools, who
have started with headless, had a good
head start and are spearheading this as
it requires a lot of investment to migrate
full-stack to headless.

Larger players are waking up to this as
they cannot rely on their market
dominance alone anymore, but the
transformation is either incomplete or
with more or less success.

Here at LoveCrafts, the community
product has been built headless since
we launched it in 2014. We have an API
with some neat features like an
expandable query method similar to
GraphQL. A Symfony-based frontend, as
well as native apps, are consuming from
this API.

In 2018, we streamlined our editorial
content from WordPress for the blog and
Magento CMS for static pages to
Prismic, which is a headless content
management system.

Back in 2011 and 2012, I was personally
involved in launching various
eCommerce businesses with Rocket
Internet’s Alice & Bob platform where
Alice is the frontend and Bob is the
backend. It was not as tidy as one would
expect today; however, it was still
somewhat novel. The original authors of
that platform went on to other ventures
but if you want to check out the latest
generation of that, search for Spryker.

A comprehensive guide for any eCommerce businesses considering moving
towards Headless Architecture, based on the first-hand experience of
LoveCrafts.

Architecture

LoveCrafts’ journey
into Headless
Architecture.
Choosing commercetools backend with
their open-minded API-first approach was
inevitable, but not a quick step. The
decision process had to take into account
all possible long-term scenarios, potential
consequences, and possible challenges
with the migration.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: The idea of separating
the backend layer from the frontend
must have been seeded at LoveCrafts a
long time ago. It is not an easy decision,
giving the scope of work that the
migration process required.

Halil Köklü: Honestly, as the engineering
team at LoveCrafts, we have been
talking about this architecture since the
beginning. Obviously, the idea evolved
over time with the technologies
available.

Whilst we adopted that target
architecture in community and content,
the commerce part has not made it yet
for various reasons. The Magento
frontend still dominates the user
experience.

At LoveCrafts, we are weaving
together commerce,
community, and content for our
makers. You can’t really
fragment the user experience
by which backend or legacy
system is used. All these three
pillars are closely interlinked.

.

Until now, we were trying this with
technologies like edge-side includes
(ESIs), but it’s not working that well from
a performance perspective.

Running multiple frontends intertwined,
as we ended up with, has many
productivity and performance issues.
These include starting from sharing CSS
and JavaScript to ensuring they are up to
date.

We need what we call a
backend-agnostic, unified user
experience.

A comprehensive guide for CTOs by Divante

◼ Modularity – when something
does not meet your expectations
or you have new use cases, you
do not need to do a full migration
again

◼ Great and complete
documentation

◼ Really good overlap with our
requirements

◼ Sensible and scalable product
data model – e.g. translations are
represented in localizable
attributes rather than requiring a
new store

◼ Flexible pricing model

◼ Staging capability for product
data, which allows making
changes and QA’ing

Piotr Karwatka: Choosing the right
backend was the first step you had to
take. What convinced you to bet on
commercetools?

Halil Köklü: It was not an easy or quick
decision, and we gave this a due
process.

A platform change like this does not
happen every day and we want to make
sure that we will not only cover our
needs now but also gain the ability to
scale for the future without the need of
migrating again for another 5 or 10
years.

We did market research and looked at 30
platforms, of which we reviewed 10 in
detail by speaking to solution architects
and going through each of our
requirements.

The main factors for going with
commercetools were actually
straightforward:

◼ Chemistry, approachable, lack of
marketing gibberish

◼ API-only approach

◼ GraphQL support

.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: Before you had been
able to establish all of these
advantages, you had to do in-depth
research. Can you describe the entire
process that eventually led you to these
conclusions?

Halil Köklü: The first step is to fully
understand your business, product, and
technology stack. We are fortunate that
most of the original developers and
product managers are still with us. I
have implemented many of the defining
parts of the product, too. So there is a lot
of knowledge, meaning we are able to
capture the entire picture of our needs. If
you have joined recently and are pushing
for change, you are going to have a hard
time. If you outsource this work to an
agency, the results are only going to be
as good as the communication and
project specification provides.

We ended up with a list of over 100 use
cases and requirements, including user
features, technical capabilities,
back-office functionalities, and licensing
and support questions.

Some of those come down to your
complexity and product vision. How
flexible does it need to be? Are your use
cases unique?

.

We then looked at the market and
compiled a list of platforms to review.

The first options on the list were to stay
with Magento 1 or upgrade to its
successor Magento 2.

Magento 2 can be used headless, but
what percentage of the functionality and
how many of the marketplace modules
are set up for headless? It was all just
very unclear.

Halil Köklü

A comprehensive guide for CTOs by Divante

Piotr Karwatka: It seems that the more
you dived into the subject, the more
questions appeared. Did industry
reports from Gartner of Forrester give
you any clues?

Halil Köklü: We looked at Gartner Magic
Quadrant and Forrester, and it gave us
the first impression of those platforms.
At their websites, you don’’t get much
info as most are behind sign-up walls.
To gain the most valuable info, you have
to contact them directly.

With 30 platforms noted at first, it was
quickly clear that we needed to narrow
down the list by asking ourselves a few
fundamental questions:

Are we going for open source? SaaS?
API-only?

This is actually where the
implementation starts. It is so
fundamental to your plan that you have
to be confident that it works with the use
cases, surrounding stack, business
processes, skills, budget, etc.

Staying on Magento 1 was not
an option due to the imminent
end-of-life. It would also have
required a huge investment in
building performant APIs to
make it headless. Since it’s
already outdated, you would
need to make it work with newer
technologies

.

By the way, PHP 7.2 goes end-of-life in
November.

Although upgrading to Magento 2
seemed natural, we decided against it.

The data migration would be much
simpler; however, the database structure
and its challenges are almost identical
to Magento 1. We would have to rewrite
all our customizations and performance
improvements again, thus risking worse
performance.

Not to mention that the question "is it
going to scale for the future?" would still
be open.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: Also, in your case
upgrading to Magento 2 would mean
pretty much the same the amount of
work as migrating to a totally different
platform.

Halil Köklü: We knew Magento 2 does
not meet the requirements of our use
cases. We would have to spend time
building that functionality, and I am not
talking about some basic user features
but fundamental changes. Once done,
we would need to tune for performance.

So, answering your question, at least in
our case, it would require the same
amount of work.

Also, with Sylius also not making the cut,
there were no open-source solutions left
in our list. The first thing we struggled
with giving up was access to the code.
We had some heated debates around
that.

.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: Eventually, you decided
to switch to SaaS. Even though, as we
said, upgrading to Magento 2 would
cost the same amount of works, it still
looks like a bold decision. Did you
simply conclude that it is the best
delivery model?

Halil Köklü: Unfortunately, it’s not that
simple.

In general, a closed-source platform
deployed on-premises or, in most cases,
in your own cloud account, only makes
sense if you don’t trust the vendor’s
SLAs.

Otherwise, you end up monitoring,
configuring, upgrading the platform
yourself, without really having a clue
about the platform itself. If you can trust
the product and the vendor, SaaS works
well.

However, going for SaaS was still not
straightforward for us, since none of our
SaaS purchases were without surprises
or disappointments. And, by that time,
you usually have invested too much to
step away or you are tied to a contract.

.

The team was pretty worried about this.
Are you really suggesting putting the
core of our commercial business into
the hands of others? What if they are
down? What if we have similar issues
like with our other SaaS solutions?

Management added further questions
around what happens if the vendor goes
bankrupt or their parent company
decides to shut them down.

Halil Köklü

A comprehensive guide for CTOs by Divante

Piotr Karwatka: You were nervous about
going for SaaS but the remaining
platforms on your list are all in exactly
in that model. How did you proceed?

Halil Köklü: By doing due diligence, in
terms of research but also getting our
hands dirty. Many vendors we talked to
didn’t even provide access to their
documentation, some didn’t want to do
proof-of-concepts (PoC).

The first thing we were looking at was if
they are really API-first. I doubted most
have started with APIs or API-first. It
turned out most of them are full-stack
with an API on the side. So they have
dedicated APIs for headless which does
not cover all the functionality. In fact, you
would need to always differentiate
between full-stack and headless when
looking at any of their articles.

For example, BigCommerce has this. So
you look at their documentation and find
a dedicated headless section with only
two APIs, fetching products and
checkout.

The next main thing we were looking at
was hard platform limits, which you can
only circumvent with expensive
workarounds.

.

In the case of the aforementioned
BigCommerce, they have a limit on how
many options a variant attribute can
have. This is the attribute you use for
defining what the variants a product has,
like a size or color. The limit with
BigCommerce is 250. And that is on the
project and not the individual product.
So if you have only one variant attribute,
you can only have up to 250 variants. We
have products with up to 500 variants.
Plus, we have over 60,000 colors in the
catalog thanks to editorial color names.

In the case of commercetools, the size
of a product record in their database is
limited to 16MB. This includes two
stages (staging, production) and all
variants and prices. Attributes defined
on a product level and not a variant level
are still copied to all variants. So,
depending on your data model, you may
not be able to have as many variants,
attributes, or even locales as you need.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: Looks like you are
suggesting a certain level of distrust
towards the official claims made by
SaaS providers?

Halil Köklü: I suggest double-checking
everything.

Don’t assume ever that something
is standard and should be right
there.

Multilingual nowadays should be
standard, right? Well, BigCommerce
does not have that, Shopify Plus did not
have it until very recently.

Check if the documentation is complete
and understandable, and if the APIs and
representations make sense.

Make sure everything either already
fulfills the requirements or use cases
you have or can be achieved easily, such
as building it yourself in a modular
fashion. Don’t expect change requests to
be delivered.

Ask to see the roadmap.

Be familiar and confident with the
customizability.

.

The challenge of
cloud-first platform
customization.
The joined forces of Vue Storefront and
commercetool turned out to be the best
way to provide LoveCrafts with the
flexibility essential in fast-paced
eCommerce industry.

A comprehensive guide for CTOs by Divante

Third, you can use what commercetools
calls an API extension. Where the
previous method was asynchronous as
in it happens after the event has
happened, API extensions are
synchronous and usually called before
an event has been completed, such as
an order. So you can interfere by
rejecting something if it does not meet
certain criteria. These extensions can be
built with cloud functions like Lambda,
too.

Fourth, you can manipulate the request
to and response from commercetools
API calls either in the frontend or in an
API gateway or middleware; the latter is
preferred as you do not clutter the
frontend. It is also recommended by
commercetools.

Piotr Karwatka: commercetools, as you
mentioned, are quite self-protective.
Can you elaborate the process of
customization based on LoveCrafts
experience?

Halil Köklü: It differs significantly
between vendors. They can actually
provide you with ways of customization;
if they don’t, then you can’t customize.
You own your frontend, so the scope of
this problem is for the data and APIs you
are using and not the look and feel.

I found that commercetools offered the
best customizability options. However,
they are the least able to make changes
to their platform just for you. There is no
server instance whatsoever where they
make exclusive changes for you. Yet
there are few things you can do.

First, you can do some things with the
data model, such as signals to the
frontend or a background process. For
example, if you want to trigger
something for specific orders you can
use a special order status.

Second, you listen to messages of
change events or you poll the latest
changes. You set up a message queue
and bind a consumer or an AWS Lambda
function. This way you can build an ERP
or payment integration.

.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: You eventually decided
to support the Vue Storefront Next
community by investing in the project
and funding the commercetools
integration with the VSF Next core
itself.

Halil Köklü: It’s actually funny. We have
spent so much time discussing headless
commerce options that, when we have
decided on commercetools, my next
topic was to decide on a frontend. Nigel,
the co-founder, joked "you have
convinced us to headless and now you
say we need an actual head"?

I think we had four options:

First, to extend the community frontend
which is built on Symfony and Backbone
to render the commerce pages like
product page and checkout. However,
the technologies were rather outdated
so it felt like we are missing out on
opportunities here.

Second, to use a somewhat traditional
CMS with a commercetools integration
like Hippo. But no one had experience
with that and we would probably be back
at square one with rigid structures
defining our user experience.

Third, to build our own frontend. But then
again, how long is it going to take?

Fourth, build on top of an existing but
modern and flexible backend-agnostic
frontend.

.

A colleague mentioned Vue Storefront to
me and we were excited straightaway. I
messaged Patrick and the next morning
we were talking.

We discussed that VSF is relying on
normalization to be backend-agnostic,
so things like product data are indexed
into an ElasticSearch cluster which VSF
can read from.

We said, “Hey, commercetools already
has great APIs, we don’t need that. What
do you think”?

And Filip said, “Hold on, let me share my
screen.” He then pitched us the concept
of VSF Next on the spot.

VSF Next interacts with backends
through contracts, each
integration responsible to
implement the contract. These
contracts are composable, so you
can swap loading e.g. categories
from a different backend than
products. Or you can go and build
your own composable.

It sounded exciting, almost too good.

Read the article about Vue
Storefront accelerating
enterprise commerce
initiatives with
commercetools.

https://blog.vuestorefront.io/vue-storefront-accelerating-enterprise-commerce-initiatives-with-commercetools/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper

A comprehensive guide for CTOs by Divante

Piotr Karwatka: You chose to engage in
open-source product instead of relying
to others. Seems like open-source is in
the LoveCrafts DNA.

Halil Köklü: Definitely, especially since
we have been using open source
projects from the start.

We have a couple of people who
contribute to open source as core team
members at various projects.

However, to be honest, we never really
found a good case for contributing other
than reporting and occasionally fixing
bugs to open-source projects. Writing
Magento extensions did not seem right.

We were planning a few launches but
other projects beat us on time with a
better product that we felt was not right.

The team was super excited to
finally find something we can
shape and have a long-term
impact.

See video about Vue Storefront
Next architecture.

https://www.youtube.com/watch?v=0e2wyhR0ZyQ

The migration process
step by step.

With the decision made, all that was left
was to get the job done. But you need to
gather the right team before you hit the
road.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: An implementation
process of that scale surely required a
variety of different skills. How did you
deal with it?

Halil Köklü: As we are strong believers in
sustainable product development, and
we are not employing contractors or
outsourcing projects, handing this
project to a Solutions Integrator was out
of the question, but everyone on the
team got the chance to prepare. It does
not matter if you are a Magento
specialist or Frontend developer, you got
to learn to write and deploy lambda
functions, speak GraphQL or know Vue.
All of them have also attended
commercetools training.

Since we had more flexibility, we
introduced an architecture review group
to review the team's approaches in the
form of pull requests to our internal
documentation. We were trying to find
consensus before implementation, to
avoid surprises later.

We knew that transferring eight years of
development into a new stack wouldn’t
be as easy and fast, so we had to
descope as much as we could. This was
for both user experience and backend
processes. For the user experience, we
went through a prioritization process to
decide which features would be in the
minimum viable product, which would
followed, and which would be removed
completely.

In terms of backend processes, we have
committed to make as few changes as
possible to avoid disruption to our
colleagues and keep the scope small.
Integrations and workflows can take
long enough to justify its own project, so
putting all these into the scope was not
feasible. We decided to sync as much
data as possible from Magento to CT.
This allows keeping both platforms in
sync for parallel operation. The focus is
on migrating the user experience and
backend processes will follow.

3 of the 5 teams are product
development teams equipped with all
skills to build user experiences and
backend. We also have a platform team
which makes sure the infrastructure, CI,
logging tools, and so on are working;
they constantly try to automate
themselves. The enterprise systems
team takes care of the majority of the
internal products including the ERP, PIM
and BI tooling, and so on.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: You are in the migration
process. How does your release plan
look in order to mitigate all the risks?

Halil Köklü: We are making changes to
the user experience both from a PWA
perspective but also reduced
functionality due to MVP, and we want to
get feedback as early as possible. We
have built the infrastructure to deploy
VSF Next to all the way to production as
early as January. We also keep
deploying the latest master of Storybook
as a static, internal site so that our
colleagues can see the UI changes we
are working on.

We are about to deliver a “Try beta” link
in the header which will be disabled as a
feature flag for now.

When we are ready to share our work so
far with the rest of the business, we are
going to enable it for our colleagues on
production. With the emphasis on
production. Our colleagues are one of
our most critical but also knowledgeable
users, so we are keen to get their
feedback. Doing things in production,
albeit hidden, ensures you are building it
right. Also, it allows our product
designers to hold user testing sessions.

After we have completed what we call
the Public Beta scope, a subset of the
MVP functionality, we are planning to
open this Try beta functionality to our
users to get feedback as early as
possible.

Once the MVP scope is complete, we are
going to start split testing, sending a
portion of the traffic to the new frontend.
We can then increase that with
confidence.

For the user accounts, we have
integrated AWS Cognito in Magento and
we are integrating Cognito into VSF.

Magento orders are going to be
imported as historical orders into
commercetools.

When we are happy with the results, we
plan to switch over locale by locale to
make sure we don’t have an SEO impact.
In case of delays or complications, we
have some backup plans.

A comprehensive guide for CTOs by Divante

Piotr Karwatka: Content is a pretty
important part of the LoveCrafts
service. I’ve noticed you’re using
Prismic. Can you say something more
about the way you structured the
content of the sites using this tool?

Halil Köklü: Like others, we have noticed
that HTML is not really content :) The
most valuable content is lost in it, but
you have to gain full control over the
experience on multiple devices.

We have agreed on different content or
article types and have implemented
slices in Prismic.

The frontend decides how to render the
pages. They look stunning!

Prismic works well for us so far and is
quite affordable.

.

The desired
LoveCrafts architecture.

The new architecture which the LoveCrafts
developers are working on will consist of
commercetools as a backend platform, Vue
Storefront, as a PWA frontend, and...

Piotr Karwatka: LoveCrafts system
will be transformed, and the list of
changes is not limited to
commercetools and Vue Storefront.
What is the desired architecture you
are planning to develop?

Halil Köklü: Let’s start with the frontend.
We have a repository where we include
both VSF and Storefront UI. We extend
Storefront UI with our own components
and customizations.

By default, VSF interacts with the
commercetools GraphQL API directly,
yet we are introducing a Graph gateway
and point the composables to that
gateway.

The Graph gateway is based on Apollo
Server. We federate to Prismic,
commercetools, and soon to our
community. This allows us to do a single
call from the frontend to fetch data from
multiple backends, such as an article. In
the future, we plan to introduce multiple
services that wrap CT services to avoid
a monolithic gateway. It also allows
assigning ownership to certain services
to teams.

The composable architecture of VSF, as
well as, the Graph gateway, provides us
with an option to potentially migrate
away from commercetools partially or
fully. The frontend does not need to
change.

By having a middleware, you
can avoid business logic in the
frontend. An example of this is
that you need to provide a
supply channel, a warehouse,
when adding an item to the cart.
If you have multiple
warehouses, there’s a
preference decision. This can be
done in the middleware instead
of the frontend. If you have
multiple frontends, this is a
lifesaver.

We decided not to use the authentication
capabilities in the customer module as if
we ever have to leave commercetools,
we won’t have a way to check if the
entered password is correct. So we’d
have to ask people to reset their
passwords, which is not a great
experience.

We reached out to Auth0 and Okta but
they were horrendously expensive. We
decided to go with AWS Cognito which
does not require a contract and is
pay-as-you-go.

What are the key building-blocks of the
new LoveCrafts architecture?

We build eCommerce
solutions for present and
future industry leaders…
just like you.
Contact us for free online workshop
to choose the best ideas for your
business.

hello@divante.com

mailto:hello@divante.com
https://www.linkedin.com/company/divante/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://www.behance.net/divante/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://dribbble.com/divante/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://www.facebook.com/Divantecom/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://twitter.com/DivanteLTD/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://github.com/DivanteLtd/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper
https://clutch.co/profile/divante/?utm_source=pdf&utm_medium=headless-webinar-whitepaper&utm_campaign=headless-webinar-whitepaper

